123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783 |
- // original source from http://www.dspdimension.com Stephan M. Bernsee
- //
- // has been modified to use FFT functions from accelerate framework (vdsp)
- // tz 11/2011
- /****************************************************************************
- *
- * NAME: smbPitchShift.cpp
- * VERSION: 1.2
- * HOME URL: http://www.dspdimension.com
- * KNOWN BUGS: none
- *
- * SYNOPSIS: Routine for doing pitch shifting while maintaining
- * duration using the Short Time Fourier Transform.
- *
- * DESCRIPTION: The routine takes a pitchShift factor value which is between 0.5
- * (one octave down) and 2. (one octave up). A value of exactly 1 does not change
- * the pitch. numSampsToProcess tells the routine how many samples in indata[0...
- * numSampsToProcess-1] should be pitch shifted and moved to outdata[0 ...
- * numSampsToProcess-1]. The two buffers can be identical (ie. it can process the
- * data in-place). fftFrameSize defines the FFT frame size used for the
- * processing. Typical values are 1024, 2048 and 4096. It may be any value <=
- * MAX_FRAME_LENGTH but it MUST be a power of 2. osamp is the STFT
- * oversampling factor which also determines the overlap between adjacent STFT
- * frames. It should at least be 4 for moderate scaling ratios. A value of 32 is
- * recommended for best quality. sampleRate takes the sample rate for the signal
- * in unit Hz, ie. 44100 for 44.1 kHz audio. The data passed to the routine in
- * indata[] should be in the range [-1.0, 1.0), which is also the output range
- * for the data, make sure you scale the data accordingly (for 16bit signed integers
- * you would have to divide (and multiply) by 32768).
- *
- * COPYRIGHT 1999-2009 Stephan M. Bernsee <smb [AT] dspdimension [DOT] com>
- *
- * The Wide Open License (WOL)
- *
- * Permission to use, copy, modify, distribute and sell this software and its
- * documentation for any purpose is hereby granted without fee, provided that
- * the above copyright notice and this license appear in all source copies.
- * THIS SOFTWARE IS PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF
- * ANY KIND. See http://www.dspguru.com/wol.htm for more information.
- *
- *****************************************************************************/
- #include <string.h>
- #include <math.h>
- #include <stdio.h>
- #import <Accelerate/Accelerate.h>
- // #define M_PI 3.14159265358979323846
- // #define MAX_FRAME_LENGTH 8192
- #define MAX_FRAME_LENGTH 4096 // tz
- void smbFft(float *fftBuffer, long fftFrameSize, long sign);
- double smbAtan2(double x, double y);
- void printFFTInitSnapshot(long fftFrameSize2,long stepSize,double freqPerBin,double expct,
- long inFifoLatency, long gRover);
- void printFFTSnapshot(long i, long k, long qpd, long index,
- double magn, double phase, double tmp,
- double window, double real, double imag,
- long gRover);
-
- // -----------------------------------------------------------------------------------------------------------------
- void smbPitchShift(float pitchShift, long numSampsToProcess, long fftFrameSize, long osamp, float sampleRate, float *indata, float *outdata)
- /*
- Routine smbPitchShift(). See top of file for explanation
- Purpose: doing pitch shifting while maintaining duration using the Short
- Time Fourier Transform.
- Author: (c)1999-2009 Stephan M. Bernsee <smb [AT] dspdimension [DOT] com>
- */
- {
- static float gInFIFO[MAX_FRAME_LENGTH];
- static float gOutFIFO[MAX_FRAME_LENGTH];
- static float gFFTworksp[2*MAX_FRAME_LENGTH];
- static float gLastPhase[MAX_FRAME_LENGTH/2+1];
- static float gSumPhase[MAX_FRAME_LENGTH/2+1];
- static float gOutputAccum[2*MAX_FRAME_LENGTH];
- static float gAnaFreq[MAX_FRAME_LENGTH];
- static float gAnaMagn[MAX_FRAME_LENGTH];
- static float gSynFreq[MAX_FRAME_LENGTH];
- static float gSynMagn[MAX_FRAME_LENGTH];
-
- static long gRover = FALSE, gInit = FALSE;
- double magn, phase, tmp, window, real, imag;
- double freqPerBin;
- double expct; // expected phase difference tz
- long i,k, qpd, index, inFifoLatency, stepSize, fftFrameSize2;
-
- // float maxMag; // tz maximum magnitude for pitch detection display
- // float displayFreq; // true pitch from last window analysis
- /* set up some handy variables */
- fftFrameSize2 = fftFrameSize/2;
- stepSize = fftFrameSize/osamp;
- freqPerBin = sampleRate/(double)fftFrameSize;
- expct = 2.*M_PI*(double)stepSize/(double)fftFrameSize;
- inFifoLatency = fftFrameSize-stepSize;
- if (gRover == FALSE) gRover = inFifoLatency;
- /* initialize our static arrays */
- if (gInit == FALSE) {
- // NSLog(@"init static arrays");
- printFFTInitSnapshot(fftFrameSize2,stepSize, freqPerBin, expct, inFifoLatency, gRover);
-
-
- memset(gInFIFO, 0, MAX_FRAME_LENGTH*sizeof(float));
- memset(gOutFIFO, 0, MAX_FRAME_LENGTH*sizeof(float));
- memset(gFFTworksp, 0, 2*MAX_FRAME_LENGTH*sizeof(float));
- memset(gLastPhase, 0, (MAX_FRAME_LENGTH/2+1)*sizeof(float));
- memset(gSumPhase, 0, (MAX_FRAME_LENGTH/2+1)*sizeof(float));
- memset(gOutputAccum, 0, 2*MAX_FRAME_LENGTH*sizeof(float));
- memset(gAnaFreq, 0, MAX_FRAME_LENGTH*sizeof(float));
- memset(gAnaMagn, 0, MAX_FRAME_LENGTH*sizeof(float));
- gInit = true;
- }
- /* main processing loop */
- for (i = 0; i < numSampsToProcess; i++){
- // loading
-
- // load the next section of data, one stepsize chunk at a time, starting at beginning of indata. the chunk gets loaded
- // to a slot at the end of the gInFIFO, while at the same time, the chunk at the beginning of gOutFIFO gets loaded to into
- // the outdata buffer one chunk at a time starting at the beginning.
- //
- // the very first time this pitchshifter is called, the gOutFIFO will be initialized with zero's so it looks like
- // there will be some latency before the actual 'processed' samples begin to fill outdata.
- //
-
- /* As long as we have not yet collected enough data, just read in */
- gInFIFO[gRover] = indata[i];
- outdata[i] = gOutFIFO[gRover-inFifoLatency];
- gRover++;
- /* now we have enough data for processing */
- if (gRover >= fftFrameSize) {
- gRover = inFifoLatency; // gRover cycles up between (fftFrameSize - stepsize) and fftFrameSize
- // eg., 896 - 1024 for an osamp of 8 and framesize of 1024
-
- /* do windowing and re,im interleave */
- // note that the first time this runs, the inFIFO will be mostly zeroes, but essentially, the fft runs on
- // data that keeps getting slid to the left?
-
- // the window is like a triangular hat that gets imposed over the sample buffer before its input to the fft
- // the size of the hat is the fftsize and it scales off the data at beginning and end of the buffer
-
- // i think that the vDSP_ctoz function will accomplish the interleaving and complex formatting stuff below
- // we would still need to do the windowing, but maybe there's an apple function for that too
-
- for (k = 0; k < fftFrameSize;k++) {
- window = -.5*cos(2.*M_PI*(double)k/(double)fftFrameSize)+.5;
- gFFTworksp[2*k] = gInFIFO[k] * window; // real part is winowed amplitude of samples
- gFFTworksp[2*k+1] = 0.; // imag part is set to 0
- // NSLog(@"i: %d, k: %d, window: %f", i, k, window );
- }
- /* ***************** ANALYSIS ******************* */
- /* do transform */
- // lets try replacing this with accelerate functions
-
- smbFft(gFFTworksp, fftFrameSize, -1);
- /* this is the analysis step */
- // this is looping through the fft output bins in the frequency domain
-
- for (k = 0; k <= fftFrameSize2; k++) {
- /* de-interlace FFT buffer */
- real = gFFTworksp[2*k];
- imag = gFFTworksp[2*k+1];
- /* compute magnitude and phase */
- magn = 2.*sqrt(real*real + imag*imag);
- phase = atan2(imag,real);
- /* compute phase difference */
- // the gLastPhase[k] would be the phase from the kth frequency bin from the previous transform over this endlessly
- // shifting data
-
- tmp = phase - gLastPhase[k];
- gLastPhase[k] = phase;
- /* subtract expected phase difference */
- tmp -= (double)k*expct;
- /* map delta phase into +/- Pi interval */
- qpd = tmp/M_PI;
- if (qpd >= 0) qpd += qpd&1;
- else qpd -= qpd&1;
-
- tmp -= M_PI*(double)qpd;
- /* get deviation from bin frequency from the +/- Pi interval */
- tmp = osamp*tmp/(2.*M_PI);
- /* compute the k-th partials' true frequency */
- tmp = (double)k*freqPerBin + tmp*freqPerBin;
- /* store magnitude and true frequency in analysis arrays */
- gAnaMagn[k] = magn;
- gAnaFreq[k] = tmp;
- }
-
- /*
- // pitch detection ------------------
-
- // find max magnitude for this pass
-
- maxMag = 0.0;
- displayFreq = 0.0;
- for (k = 0; k <= fftFrameSize2; k++) {
- if (gAnaMagn[k] > maxMag) {
- maxMag = gAnaMagn[k];
- displayFreq = gAnaFreq[k];
- }
- }
- NSLog(@"pitch is: %f", displayFreq);
- */
-
- /* ***************** PROCESSING ******************* */
- /* this does the actual pitch shifting */
- memset(gSynMagn, 0, fftFrameSize*sizeof(float)); // why do we zero out the buffer to frame size but
- memset(gSynFreq, 0, fftFrameSize*sizeof(float)); // only actually seem to use half of frame size?
- // so this code assigns the results of the analysis.
-
- // it sets up pitch shifted bins using analyzed magnitude and analyzed freq * pitchShift
-
- for (k = 0; k <= fftFrameSize2; k++) {
- index = (long) (k * pitchShift);
- // NSLog(@"i: %d, index: %d, k: %d, pitchShift: %f", i, index, k, pitchShift );
- if (index <= fftFrameSize2) {
- gSynMagn[index] += gAnaMagn[k];
- gSynFreq[index] = gAnaFreq[k] * pitchShift;
- }
- }
-
- /* ***************** SYNTHESIS ******************* */
- /* this is the synthesis step */
- for (k = 0; k <= fftFrameSize2; k++) {
- /* get magnitude and true frequency from synthesis arrays */
- magn = gSynMagn[k];
- tmp = gSynFreq[k];
- /* subtract bin mid frequency */
- tmp -= (double)k*freqPerBin;
- /* get bin deviation from freq deviation */
- tmp /= freqPerBin;
- /* take osamp into account */
- tmp = 2.*M_PI*tmp/osamp;
- /* add the overlap phase advance back in */
- tmp += (double)k*expct;
- /* accumulate delta phase to get bin phase */
- gSumPhase[k] += tmp;
- phase = gSumPhase[k];
- /* get real and imag part and re-interleave */
- gFFTworksp[2*k] = magn*cos(phase);
- gFFTworksp[2*k+1] = magn*sin(phase);
- }
- /* zero negative frequencies */
- for (k = fftFrameSize+2; k < 2*fftFrameSize; k++) gFFTworksp[k] = 0.;
- /* do inverse transform */
- smbFft(gFFTworksp, fftFrameSize, 1);
- /* do windowing and add to output accumulator */
- for(k=0; k < fftFrameSize; k++) {
- window = -.5*cos(2.*M_PI*(double)k/(double)fftFrameSize)+.5;
- gOutputAccum[k] += 2.*window*gFFTworksp[2*k]/(fftFrameSize2*osamp);
- }
- for (k = 0; k < stepSize; k++) gOutFIFO[k] = gOutputAccum[k];
- // why use two different methods to copy memory?
-
- /* shift accumulator */
- // this shifts in zeroes from beyond the bounds of framesize to fill the upper step size chunk
-
- memmove(gOutputAccum, gOutputAccum+stepSize, fftFrameSize*sizeof(float));
- /* move input FIFO */
- for (k = 0; k < inFifoLatency; k++) gInFIFO[k] = gInFIFO[k+stepSize];
- }
- }
- }
- // -----------------------------------------------------------------------------------------------------------------
- // -----------------------------------------------------------------------------------------------------------------
- void smb2PitchShift(float pitchShift, long numSampsToProcess, long fftFrameSize, long osamp,
- float sampleRate, float *indata, float *outdata,
- FFTSetup fftSetup, float *frequency)
- /*
- Routine smbPitchShift(). See top of file for explanation
- Purpose: doing pitch shifting while maintaining duration using the Short
- Time Fourier Transform.
- Author: (c)1999-2009 Stephan M. Bernsee <smb [AT] dspdimension [DOT] com>
- */
- {
-
- static float gInFIFO[MAX_FRAME_LENGTH];
- static float gOutFIFO[MAX_FRAME_LENGTH];
- static float gFFTworksp[2*MAX_FRAME_LENGTH];
- static float gLastPhase[MAX_FRAME_LENGTH/2+1];
- static float gSumPhase[MAX_FRAME_LENGTH/2+1];
- static float gOutputAccum[2*MAX_FRAME_LENGTH];
- static float gAnaFreq[MAX_FRAME_LENGTH];
- static float gAnaMagn[MAX_FRAME_LENGTH];
- static float gSynFreq[MAX_FRAME_LENGTH];
- static float gSynMagn[MAX_FRAME_LENGTH];
-
- static COMPLEX_SPLIT A;
-
- static long gRover = FALSE, gInit = FALSE;
- double magn, phase, tmp, window, real, imag;
- double freqPerBin;
- double expct; // expected phase difference tz
- long i,k, qpd, index, inFifoLatency, stepSize, fftFrameSize2;
-
- int stride;
- size_t bufferCapacity; // In samples
- int log2n, n, nOver2; // params for fft setup
-
- float maxMag; // tz maximum magnitude for pitch detection display
- float displayFreq; // true pitch from last window analysis
- int pitchCount = 0; // number of times pitch gets measured
- float freqTotal = 0; // sum of all pitch measurements
-
- /* set up some handy variables */
- fftFrameSize2 = fftFrameSize/2;
- stepSize = fftFrameSize/osamp;
- freqPerBin = sampleRate/(double)fftFrameSize;
- expct = 2.*M_PI*(double)stepSize/(double)fftFrameSize;
- inFifoLatency = fftFrameSize-stepSize;
- if (gRover == FALSE) gRover = inFifoLatency;
-
- stride = 1;
- log2n = log2f(fftFrameSize); // log base2 of max number of frames, eg., 10 for 1024
- n = 1 << log2n; // actual max number of frames, eg., 1024 - what a silly way to compute it
-
- nOver2 = fftFrameSize/2;
- bufferCapacity = fftFrameSize;
- // index = 0;
-
-
-
-
- /* initialize our static arrays */
- if (gInit == FALSE) {
- // NSLog(@"init static arrays");
- printFFTInitSnapshot(fftFrameSize2,stepSize, freqPerBin, expct, inFifoLatency, gRover);
-
-
-
- memset(gInFIFO, 0, MAX_FRAME_LENGTH*sizeof(float));
- memset(gOutFIFO, 0, MAX_FRAME_LENGTH*sizeof(float));
- memset(gFFTworksp, 0, 2*MAX_FRAME_LENGTH*sizeof(float));
- memset(gLastPhase, 0, (MAX_FRAME_LENGTH/2+1)*sizeof(float));
- memset(gSumPhase, 0, (MAX_FRAME_LENGTH/2+1)*sizeof(float));
- memset(gOutputAccum, 0, 2*MAX_FRAME_LENGTH*sizeof(float));
- memset(gAnaFreq, 0, MAX_FRAME_LENGTH*sizeof(float));
- memset(gAnaMagn, 0, MAX_FRAME_LENGTH*sizeof(float));
-
- // split complex number buffer
- A.realp = (float *)malloc(nOver2 * sizeof(float)); //
- A.imagp = (float *)malloc(nOver2 * sizeof(float)); // why is it set to half the frame size
-
-
-
- gInit = true;
- }
-
- // NSLog(@"before load");
- /* main processing loop */
- for (i = 0; i < numSampsToProcess; i++){
-
- // loading
-
- // load the next section of data, one stepsize chunk at a time, starting at beginning of indata. the chunk gets loaded
- // to a slot at the end of the gInFIFO, while at the same time, the chunk at the beginning of gOutFIFO gets loaded to into
- // the outdata buffer one chunk at a time starting at the beginning.
- //
- // the very first time this pitchshifter is called, the gOutFIFO will be initialized with zero's so it looks like
- // there will be some latency before the actual 'processed' samples begin to fill outdata.
- //
-
- /* As long as we have not yet collected enough data, just read in */
- gInFIFO[gRover] = indata[i];
- outdata[i] = gOutFIFO[gRover-inFifoLatency];
- gRover++;
-
- /* now we have enough data for processing */
- if (gRover >= fftFrameSize) {
- gRover = inFifoLatency; // gRover cycles up between (fftFrameSize - stepsize) and fftFrameSize
- // eg., 896 - 1024 for an osamp of 8 and framesize of 1024
-
- /* do windowing and re,im interleave */
- // note that the first time this runs, the inFIFO will be mostly zeroes, but essentially, the fft runs on
- // data that keeps getting slid to the left?
-
- // the window is like a triangular hat that gets imposed over the sample buffer before its input to the fft
- // the size of the hat is the fftsize and it scales off the data at beginning and end of the buffer
-
- // i think that the vDSP_ctoz function will accomplish the interleaving and complex formatting stuff below
- // we would still need to do the windowing, but maybe there's an apple function for that too
-
- // for (k = 0; k < fftFrameSize;k++) {
- // window = -.5*cos(2.*M_PI*(double)k/(double)fftFrameSize)+.5;
- // gFFTworksp[2*k] = gInFIFO[k] * window; // real part is winowed amplitude of samples
- // gFFTworksp[2*k+1] = 0.; // imag part is set to 0
- // // NSLog(@"i: %d, k: %d, window: %f", i, k, window );
- // }
-
-
- for (k = 0; k < fftFrameSize;k++) {
- window = -.5*cos(2.*M_PI*(double)k/(double)fftFrameSize)+.5;
- gFFTworksp[k] = gInFIFO[k] * window; // real part is winowed amplitude of samples
- // gFFTworksp[2*k+1] = 0.; // imag part is set to 0
- // NSLog(@"i: %d, k: %d, window: %f", i, k, window );
- }
-
- // cast to complex interleaved then convert to split complex vector
-
- vDSP_ctoz((COMPLEX*)gFFTworksp, 2, &A, 1, nOver2);
-
- // Carry out a Forward FFT transform.
-
- // NSLog(@"before transform");
-
- vDSP_fft_zrip(fftSetup, &A, stride, log2n, FFT_FORWARD);
-
- // NSLog(@"after transform");
- // convert from split complex to complex interleaved for analysis
-
- vDSP_ztoc(&A, 1, (COMPLEX *)gFFTworksp, 2, nOver2);
-
- /* ***************** ANALYSIS ******************* */
- /* do transform */
- // lets try replacing this with accelerate functions
-
- // smbFft(gFFTworksp, fftFrameSize, -1);
-
- /* this is the analysis step */
- // this is looping through the fft output bins in the frequency domain
-
- for (k = 0; k <= fftFrameSize2; k++) {
-
- /* de-interlace FFT buffer */
- real = gFFTworksp[2*k];
- imag = gFFTworksp[2*k+1];
-
- /* compute magnitude and phase */
- magn = 2.*sqrt(real*real + imag*imag);
- phase = atan2(imag,real);
-
- /* compute phase difference */
- // the gLastPhase[k] would be the phase from the kth frequency bin from the previous transform over this endlessly
- // shifting data
-
- tmp = phase - gLastPhase[k];
- gLastPhase[k] = phase;
-
- /* subtract expected phase difference */
- tmp -= (double)k*expct;
-
- /* map delta phase into +/- Pi interval */
- qpd = tmp/M_PI;
- if (qpd >= 0) qpd += qpd&1;
- else qpd -= qpd&1;
-
- tmp -= M_PI*(double)qpd;
-
- /* get deviation from bin frequency from the +/- Pi interval */
- tmp = osamp*tmp/(2.*M_PI);
-
- /* compute the k-th partials' true frequency */
- tmp = (double)k*freqPerBin + tmp*freqPerBin;
-
- /* store magnitude and true frequency in analysis arrays */
- gAnaMagn[k] = magn;
- gAnaFreq[k] = tmp;
-
- }
-
-
- // pitch detection ------------------
-
- // find max magnitude for this pass
-
- maxMag = 0.0;
- displayFreq = 0.0;
- for (k = 0; k <= fftFrameSize2; k++) {
- if (gAnaMagn[k] > maxMag) {
- maxMag = gAnaMagn[k];
- displayFreq = gAnaFreq[k];
- }
- }
- freqTotal += displayFreq;
- pitchCount++;
-
-
-
- /* ***************** PROCESSING ******************* */
- /* this does the actual pitch shifting */
- memset(gSynMagn, 0, fftFrameSize*sizeof(float)); // why do we zero out the buffer to frame size but
- memset(gSynFreq, 0, fftFrameSize*sizeof(float)); // only actually seem to use half of frame size?
-
- // so this code assigns the results of the analysis.
-
- // it sets up pitch shifted bins using analyzed magnitude and analyzed freq * pitchShift
-
- for (k = 0; k <= fftFrameSize2; k++) {
- index = (long) (k * pitchShift);
- // NSLog(@"i: %d, index: %d, k: %d, pitchShift: %f", i, index, k, pitchShift );
- if (index <= fftFrameSize2) {
- gSynMagn[index] += gAnaMagn[k];
- gSynFreq[index] = gAnaFreq[k] * pitchShift;
- }
- }
-
- /* ***************** SYNTHESIS ******************* */
- /* this is the synthesis step */
- for (k = 0; k <= fftFrameSize2; k++) {
-
- /* get magnitude and true frequency from synthesis arrays */
- magn = gSynMagn[k];
- tmp = gSynFreq[k];
-
- /* subtract bin mid frequency */
- tmp -= (double)k*freqPerBin;
-
- /* get bin deviation from freq deviation */
- tmp /= freqPerBin;
-
- /* take osamp into account */
- tmp = 2.*M_PI*tmp/osamp;
-
- /* add the overlap phase advance back in */
- tmp += (double)k*expct;
-
- /* accumulate delta phase to get bin phase */
- gSumPhase[k] += tmp;
- phase = gSumPhase[k];
-
- /* get real and imag part and re-interleave */
- gFFTworksp[2*k] = magn*cos(phase);
- gFFTworksp[2*k+1] = magn*sin(phase);
-
- }
-
- /* zero negative frequencies */
- for (k = fftFrameSize+2; k < 2*fftFrameSize; k++) gFFTworksp[k] = 0.;
-
- // convert from complex interleaved to split complex vector
-
- vDSP_ctoz((COMPLEX*)gFFTworksp, 2, &A, 1, nOver2);
-
- // Carry out an inverse FFT transform.
-
- vDSP_fft_zrip(fftSetup, &A, stride, log2n, FFT_INVERSE );
-
- // scale it
-
- // the suggested scale factor makes the sound barely audible
- // so we should probably experiment with various things
- // I have a hunch that the stfft needs a different kind of scaling
-
- // float scale = (float) 1.0 / (2 * n);
- // float scale = (float) 1.0 / (osamp);
- float scale = .25;
- vDSP_vsmul(A.realp, 1, &scale, A.realp, 1, nOver2 );
- vDSP_vsmul(A.imagp, 1, &scale, A.imagp, 1, nOver2 );
-
-
- // covert from split complex to complex interleaved
-
- vDSP_ztoc(&A, 1, (COMPLEX *) gFFTworksp, 2, nOver2);
-
- /* do inverse transform */
- // smbFft(gFFTworksp, fftFrameSize, 1);
-
- /* do windowing and add to output accumulator */
-
-
- /*
- for(k=0; k < fftFrameSize; k++) {
- window = -.5*cos(2.*M_PI*(double)k/(double)fftFrameSize)+.5;
- gOutputAccum[k] += 2.*window*gFFTworksp[2*k]/(fftFrameSize2*osamp);
- }
- */
- /* do windowing and add to output accumulator */
- for(k=0; k < fftFrameSize; k++) {
- window = -.5*cos(2.*M_PI*(double)k/(double)fftFrameSize)+.5;
- gOutputAccum[k] += 2.*window*gFFTworksp[k]/(fftFrameSize2*osamp);
- }
-
- for (k = 0; k < stepSize; k++) gOutFIFO[k] = gOutputAccum[k];
-
- // why use two different methods to copy memory?
-
- /* shift accumulator */
- // this shifts in zeroes from beyond the bounds of framesize to fill the upper step size chunk
-
- memmove(gOutputAccum, gOutputAccum+stepSize, fftFrameSize*sizeof(float));
-
- /* move input FIFO */
- for (k = 0; k < inFifoLatency; k++) gInFIFO[k] = gInFIFO[k+stepSize];
- }
- }
-
-
- // NSLog(@"pitchCount: %d", pitchCount);
- *frequency = (float) (freqTotal / pitchCount);
- // NSLog(@"pitch is: %f", *frequency );
- }
- // -----------------------------------------------------------------------------------------------------------------
- void smbFft(float *fftBuffer, long fftFrameSize, long sign)
- /*
- FFT routine, (C)1996 S.M.Bernsee. Sign = -1 is FFT, 1 is iFFT (inverse)
- Fills fftBuffer[0...2*fftFrameSize-1] with the Fourier transform of the
- time domain data in fftBuffer[0...2*fftFrameSize-1]. The FFT array takes
- and returns the cosine and sine parts in an interleaved manner, ie.
- fftBuffer[0] = cosPart[0], fftBuffer[1] = sinPart[0], asf. fftFrameSize
- must be a power of 2. It expects a complex input signal (see footnote 2),
- ie. when working with 'common' audio signals our input signal has to be
- passed as {in[0],0.,in[1],0.,in[2],0.,...} asf. In that case, the transform
- of the frequencies of interest is in fftBuffer[0...fftFrameSize].
- */
- {
- float wr, wi, arg, *p1, *p2, temp;
- float tr, ti, ur, ui, *p1r, *p1i, *p2r, *p2i;
- long i, bitm, j, le, le2, k;
- for (i = 2; i < 2*fftFrameSize-2; i += 2) {
- for (bitm = 2, j = 0; bitm < 2*fftFrameSize; bitm <<= 1) {
- if (i & bitm) j++;
- j <<= 1;
- }
- if (i < j) {
- p1 = fftBuffer+i; p2 = fftBuffer+j;
- temp = *p1; *(p1++) = *p2;
- *(p2++) = temp; temp = *p1;
- *p1 = *p2; *p2 = temp;
- }
- }
- for (k = 0, le = 2; k < (long)(log(fftFrameSize)/log(2.)+.5); k++) {
- le <<= 1;
- le2 = le>>1;
- ur = 1.0;
- ui = 0.0;
- arg = M_PI / (le2>>1);
- wr = cos(arg);
- wi = sign*sin(arg);
- for (j = 0; j < le2; j += 2) {
- p1r = fftBuffer+j; p1i = p1r+1;
- p2r = p1r+le2; p2i = p2r+1;
- for (i = j; i < 2*fftFrameSize; i += le) {
- tr = *p2r * ur - *p2i * ui;
- ti = *p2r * ui + *p2i * ur;
- *p2r = *p1r - tr; *p2i = *p1i - ti;
- *p1r += tr; *p1i += ti;
- p1r += le; p1i += le;
- p2r += le; p2i += le;
- }
- tr = ur*wr - ui*wi;
- ui = ur*wi + ui*wr;
- ur = tr;
- }
- }
- }
- // -----------------------------------------------------------------------------------------------------------------
- /*
- 12/12/02, smb
-
- PLEASE NOTE:
-
- There have been some reports on domain errors when the atan2() function was used
- as in the above code. Usually, a domain error should not interrupt the program flow
- (maybe except in Debug mode) but rather be handled "silently" and a global variable
- should be set according to this error. However, on some occasions people ran into
- this kind of scenario, so a replacement atan2() function is provided here.
-
- If you are experiencing domain errors and your program stops, simply replace all
- instances of atan2() with calls to the smbAtan2() function below.
-
- */
- double smbAtan2(double x, double y)
- {
- double signx;
- if (x > 0.) signx = 1.;
- else signx = -1.;
-
- if (x == 0.) return 0.;
- if (y == 0.) return signx * M_PI / 2.;
-
- return atan2(x, y);
- }
- // tz utility functions
- void printFFTInitSnapshot(long fftFrameSize2,long stepSize,double freqPerBin,double expct,
- long inFifoLatency, long gRover) {
- // NSLog(@"fft init snapshot");
- //
- // NSLog(@"fftFrameSize2: %ld", fftFrameSize2);
- // NSLog(@"stepSize: %ld", stepSize);
- // NSLog(@"freqPerBin: %f", freqPerBin);
- // NSLog(@"expct: %f", expct);
- // NSLog(@"inFifoLatency: %ld", inFifoLatency);
- // NSLog(@"gRover: %ld", gRover);
-
- }
- void printFFTSnapshot(long i, long k, long qpd, long index,
- double magn, double phase, double tmp,
- double window, double real, double imag,
- long gRover){
-
- // NSLog(@"fft snapshot");
- // NSLog(@"i: %ld, k: %ld, qpd: %ld, index: %ld", i,k,qpd,index);
- // NSLog(@"magn: %f, phase: %f, tmp: %f", magn, phase, tmp );
- // NSLog(@"window: %f, real: %f, imag: %f ", window, real, imag);
- // NSLog(@"gRover %ld", gRover);
- //
- }
- // -----------------------------------------------------------------------------------------------------------------
- // -----------------------------------------------------------------------------------------------------------------
- // -----------------------------------------------------------------------------------------------------------------
|