// original source from http://www.dspdimension.com Stephan M. Bernsee // // has been modified to use FFT functions from accelerate framework (vdsp) // tz 11/2011 /**************************************************************************** * * NAME: smbPitchShift.cpp * VERSION: 1.2 * HOME URL: http://www.dspdimension.com * KNOWN BUGS: none * * SYNOPSIS: Routine for doing pitch shifting while maintaining * duration using the Short Time Fourier Transform. * * DESCRIPTION: The routine takes a pitchShift factor value which is between 0.5 * (one octave down) and 2. (one octave up). A value of exactly 1 does not change * the pitch. numSampsToProcess tells the routine how many samples in indata[0... * numSampsToProcess-1] should be pitch shifted and moved to outdata[0 ... * numSampsToProcess-1]. The two buffers can be identical (ie. it can process the * data in-place). fftFrameSize defines the FFT frame size used for the * processing. Typical values are 1024, 2048 and 4096. It may be any value <= * MAX_FRAME_LENGTH but it MUST be a power of 2. osamp is the STFT * oversampling factor which also determines the overlap between adjacent STFT * frames. It should at least be 4 for moderate scaling ratios. A value of 32 is * recommended for best quality. sampleRate takes the sample rate for the signal * in unit Hz, ie. 44100 for 44.1 kHz audio. The data passed to the routine in * indata[] should be in the range [-1.0, 1.0), which is also the output range * for the data, make sure you scale the data accordingly (for 16bit signed integers * you would have to divide (and multiply) by 32768). * * COPYRIGHT 1999-2009 Stephan M. Bernsee * * The Wide Open License (WOL) * * Permission to use, copy, modify, distribute and sell this software and its * documentation for any purpose is hereby granted without fee, provided that * the above copyright notice and this license appear in all source copies. * THIS SOFTWARE IS PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF * ANY KIND. See http://www.dspguru.com/wol.htm for more information. * *****************************************************************************/ #include #include #include #import // #define M_PI 3.14159265358979323846 // #define MAX_FRAME_LENGTH 8192 #define MAX_FRAME_LENGTH 4096 // tz void smbFft(float *fftBuffer, long fftFrameSize, long sign); double smbAtan2(double x, double y); void printFFTInitSnapshot(long fftFrameSize2,long stepSize,double freqPerBin,double expct, long inFifoLatency, long gRover); void printFFTSnapshot(long i, long k, long qpd, long index, double magn, double phase, double tmp, double window, double real, double imag, long gRover); // ----------------------------------------------------------------------------------------------------------------- void smbPitchShift(float pitchShift, long numSampsToProcess, long fftFrameSize, long osamp, float sampleRate, float *indata, float *outdata) /* Routine smbPitchShift(). See top of file for explanation Purpose: doing pitch shifting while maintaining duration using the Short Time Fourier Transform. Author: (c)1999-2009 Stephan M. Bernsee */ { static float gInFIFO[MAX_FRAME_LENGTH]; static float gOutFIFO[MAX_FRAME_LENGTH]; static float gFFTworksp[2*MAX_FRAME_LENGTH]; static float gLastPhase[MAX_FRAME_LENGTH/2+1]; static float gSumPhase[MAX_FRAME_LENGTH/2+1]; static float gOutputAccum[2*MAX_FRAME_LENGTH]; static float gAnaFreq[MAX_FRAME_LENGTH]; static float gAnaMagn[MAX_FRAME_LENGTH]; static float gSynFreq[MAX_FRAME_LENGTH]; static float gSynMagn[MAX_FRAME_LENGTH]; static long gRover = FALSE, gInit = FALSE; double magn, phase, tmp, window, real, imag; double freqPerBin; double expct; // expected phase difference tz long i,k, qpd, index, inFifoLatency, stepSize, fftFrameSize2; // float maxMag; // tz maximum magnitude for pitch detection display // float displayFreq; // true pitch from last window analysis /* set up some handy variables */ fftFrameSize2 = fftFrameSize/2; stepSize = fftFrameSize/osamp; freqPerBin = sampleRate/(double)fftFrameSize; expct = 2.*M_PI*(double)stepSize/(double)fftFrameSize; inFifoLatency = fftFrameSize-stepSize; if (gRover == FALSE) gRover = inFifoLatency; /* initialize our static arrays */ if (gInit == FALSE) { // NSLog(@"init static arrays"); printFFTInitSnapshot(fftFrameSize2,stepSize, freqPerBin, expct, inFifoLatency, gRover); memset(gInFIFO, 0, MAX_FRAME_LENGTH*sizeof(float)); memset(gOutFIFO, 0, MAX_FRAME_LENGTH*sizeof(float)); memset(gFFTworksp, 0, 2*MAX_FRAME_LENGTH*sizeof(float)); memset(gLastPhase, 0, (MAX_FRAME_LENGTH/2+1)*sizeof(float)); memset(gSumPhase, 0, (MAX_FRAME_LENGTH/2+1)*sizeof(float)); memset(gOutputAccum, 0, 2*MAX_FRAME_LENGTH*sizeof(float)); memset(gAnaFreq, 0, MAX_FRAME_LENGTH*sizeof(float)); memset(gAnaMagn, 0, MAX_FRAME_LENGTH*sizeof(float)); gInit = true; } /* main processing loop */ for (i = 0; i < numSampsToProcess; i++){ // loading // load the next section of data, one stepsize chunk at a time, starting at beginning of indata. the chunk gets loaded // to a slot at the end of the gInFIFO, while at the same time, the chunk at the beginning of gOutFIFO gets loaded to into // the outdata buffer one chunk at a time starting at the beginning. // // the very first time this pitchshifter is called, the gOutFIFO will be initialized with zero's so it looks like // there will be some latency before the actual 'processed' samples begin to fill outdata. // /* As long as we have not yet collected enough data, just read in */ gInFIFO[gRover] = indata[i]; outdata[i] = gOutFIFO[gRover-inFifoLatency]; gRover++; /* now we have enough data for processing */ if (gRover >= fftFrameSize) { gRover = inFifoLatency; // gRover cycles up between (fftFrameSize - stepsize) and fftFrameSize // eg., 896 - 1024 for an osamp of 8 and framesize of 1024 /* do windowing and re,im interleave */ // note that the first time this runs, the inFIFO will be mostly zeroes, but essentially, the fft runs on // data that keeps getting slid to the left? // the window is like a triangular hat that gets imposed over the sample buffer before its input to the fft // the size of the hat is the fftsize and it scales off the data at beginning and end of the buffer // i think that the vDSP_ctoz function will accomplish the interleaving and complex formatting stuff below // we would still need to do the windowing, but maybe there's an apple function for that too for (k = 0; k < fftFrameSize;k++) { window = -.5*cos(2.*M_PI*(double)k/(double)fftFrameSize)+.5; gFFTworksp[2*k] = gInFIFO[k] * window; // real part is winowed amplitude of samples gFFTworksp[2*k+1] = 0.; // imag part is set to 0 // NSLog(@"i: %d, k: %d, window: %f", i, k, window ); } /* ***************** ANALYSIS ******************* */ /* do transform */ // lets try replacing this with accelerate functions smbFft(gFFTworksp, fftFrameSize, -1); /* this is the analysis step */ // this is looping through the fft output bins in the frequency domain for (k = 0; k <= fftFrameSize2; k++) { /* de-interlace FFT buffer */ real = gFFTworksp[2*k]; imag = gFFTworksp[2*k+1]; /* compute magnitude and phase */ magn = 2.*sqrt(real*real + imag*imag); phase = atan2(imag,real); /* compute phase difference */ // the gLastPhase[k] would be the phase from the kth frequency bin from the previous transform over this endlessly // shifting data tmp = phase - gLastPhase[k]; gLastPhase[k] = phase; /* subtract expected phase difference */ tmp -= (double)k*expct; /* map delta phase into +/- Pi interval */ qpd = tmp/M_PI; if (qpd >= 0) qpd += qpd&1; else qpd -= qpd&1; tmp -= M_PI*(double)qpd; /* get deviation from bin frequency from the +/- Pi interval */ tmp = osamp*tmp/(2.*M_PI); /* compute the k-th partials' true frequency */ tmp = (double)k*freqPerBin + tmp*freqPerBin; /* store magnitude and true frequency in analysis arrays */ gAnaMagn[k] = magn; gAnaFreq[k] = tmp; } /* // pitch detection ------------------ // find max magnitude for this pass maxMag = 0.0; displayFreq = 0.0; for (k = 0; k <= fftFrameSize2; k++) { if (gAnaMagn[k] > maxMag) { maxMag = gAnaMagn[k]; displayFreq = gAnaFreq[k]; } } NSLog(@"pitch is: %f", displayFreq); */ /* ***************** PROCESSING ******************* */ /* this does the actual pitch shifting */ memset(gSynMagn, 0, fftFrameSize*sizeof(float)); // why do we zero out the buffer to frame size but memset(gSynFreq, 0, fftFrameSize*sizeof(float)); // only actually seem to use half of frame size? // so this code assigns the results of the analysis. // it sets up pitch shifted bins using analyzed magnitude and analyzed freq * pitchShift for (k = 0; k <= fftFrameSize2; k++) { index = (long) (k * pitchShift); // NSLog(@"i: %d, index: %d, k: %d, pitchShift: %f", i, index, k, pitchShift ); if (index <= fftFrameSize2) { gSynMagn[index] += gAnaMagn[k]; gSynFreq[index] = gAnaFreq[k] * pitchShift; } } /* ***************** SYNTHESIS ******************* */ /* this is the synthesis step */ for (k = 0; k <= fftFrameSize2; k++) { /* get magnitude and true frequency from synthesis arrays */ magn = gSynMagn[k]; tmp = gSynFreq[k]; /* subtract bin mid frequency */ tmp -= (double)k*freqPerBin; /* get bin deviation from freq deviation */ tmp /= freqPerBin; /* take osamp into account */ tmp = 2.*M_PI*tmp/osamp; /* add the overlap phase advance back in */ tmp += (double)k*expct; /* accumulate delta phase to get bin phase */ gSumPhase[k] += tmp; phase = gSumPhase[k]; /* get real and imag part and re-interleave */ gFFTworksp[2*k] = magn*cos(phase); gFFTworksp[2*k+1] = magn*sin(phase); } /* zero negative frequencies */ for (k = fftFrameSize+2; k < 2*fftFrameSize; k++) gFFTworksp[k] = 0.; /* do inverse transform */ smbFft(gFFTworksp, fftFrameSize, 1); /* do windowing and add to output accumulator */ for(k=0; k < fftFrameSize; k++) { window = -.5*cos(2.*M_PI*(double)k/(double)fftFrameSize)+.5; gOutputAccum[k] += 2.*window*gFFTworksp[2*k]/(fftFrameSize2*osamp); } for (k = 0; k < stepSize; k++) gOutFIFO[k] = gOutputAccum[k]; // why use two different methods to copy memory? /* shift accumulator */ // this shifts in zeroes from beyond the bounds of framesize to fill the upper step size chunk memmove(gOutputAccum, gOutputAccum+stepSize, fftFrameSize*sizeof(float)); /* move input FIFO */ for (k = 0; k < inFifoLatency; k++) gInFIFO[k] = gInFIFO[k+stepSize]; } } } // ----------------------------------------------------------------------------------------------------------------- // ----------------------------------------------------------------------------------------------------------------- void smb2PitchShift(float pitchShift, long numSampsToProcess, long fftFrameSize, long osamp, float sampleRate, float *indata, float *outdata, FFTSetup fftSetup, float *frequency) /* Routine smbPitchShift(). See top of file for explanation Purpose: doing pitch shifting while maintaining duration using the Short Time Fourier Transform. Author: (c)1999-2009 Stephan M. Bernsee */ { static float gInFIFO[MAX_FRAME_LENGTH]; static float gOutFIFO[MAX_FRAME_LENGTH]; static float gFFTworksp[2*MAX_FRAME_LENGTH]; static float gLastPhase[MAX_FRAME_LENGTH/2+1]; static float gSumPhase[MAX_FRAME_LENGTH/2+1]; static float gOutputAccum[2*MAX_FRAME_LENGTH]; static float gAnaFreq[MAX_FRAME_LENGTH]; static float gAnaMagn[MAX_FRAME_LENGTH]; static float gSynFreq[MAX_FRAME_LENGTH]; static float gSynMagn[MAX_FRAME_LENGTH]; static COMPLEX_SPLIT A; static long gRover = FALSE, gInit = FALSE; double magn, phase, tmp, window, real, imag; double freqPerBin; double expct; // expected phase difference tz long i,k, qpd, index, inFifoLatency, stepSize, fftFrameSize2; int stride; size_t bufferCapacity; // In samples int log2n, n, nOver2; // params for fft setup float maxMag; // tz maximum magnitude for pitch detection display float displayFreq; // true pitch from last window analysis int pitchCount = 0; // number of times pitch gets measured float freqTotal = 0; // sum of all pitch measurements /* set up some handy variables */ fftFrameSize2 = fftFrameSize/2; stepSize = fftFrameSize/osamp; freqPerBin = sampleRate/(double)fftFrameSize; expct = 2.*M_PI*(double)stepSize/(double)fftFrameSize; inFifoLatency = fftFrameSize-stepSize; if (gRover == FALSE) gRover = inFifoLatency; stride = 1; log2n = log2f(fftFrameSize); // log base2 of max number of frames, eg., 10 for 1024 n = 1 << log2n; // actual max number of frames, eg., 1024 - what a silly way to compute it nOver2 = fftFrameSize/2; bufferCapacity = fftFrameSize; // index = 0; /* initialize our static arrays */ if (gInit == FALSE) { // NSLog(@"init static arrays"); printFFTInitSnapshot(fftFrameSize2,stepSize, freqPerBin, expct, inFifoLatency, gRover); memset(gInFIFO, 0, MAX_FRAME_LENGTH*sizeof(float)); memset(gOutFIFO, 0, MAX_FRAME_LENGTH*sizeof(float)); memset(gFFTworksp, 0, 2*MAX_FRAME_LENGTH*sizeof(float)); memset(gLastPhase, 0, (MAX_FRAME_LENGTH/2+1)*sizeof(float)); memset(gSumPhase, 0, (MAX_FRAME_LENGTH/2+1)*sizeof(float)); memset(gOutputAccum, 0, 2*MAX_FRAME_LENGTH*sizeof(float)); memset(gAnaFreq, 0, MAX_FRAME_LENGTH*sizeof(float)); memset(gAnaMagn, 0, MAX_FRAME_LENGTH*sizeof(float)); // split complex number buffer A.realp = (float *)malloc(nOver2 * sizeof(float)); // A.imagp = (float *)malloc(nOver2 * sizeof(float)); // why is it set to half the frame size gInit = true; } // NSLog(@"before load"); /* main processing loop */ for (i = 0; i < numSampsToProcess; i++){ // loading // load the next section of data, one stepsize chunk at a time, starting at beginning of indata. the chunk gets loaded // to a slot at the end of the gInFIFO, while at the same time, the chunk at the beginning of gOutFIFO gets loaded to into // the outdata buffer one chunk at a time starting at the beginning. // // the very first time this pitchshifter is called, the gOutFIFO will be initialized with zero's so it looks like // there will be some latency before the actual 'processed' samples begin to fill outdata. // /* As long as we have not yet collected enough data, just read in */ gInFIFO[gRover] = indata[i]; outdata[i] = gOutFIFO[gRover-inFifoLatency]; gRover++; /* now we have enough data for processing */ if (gRover >= fftFrameSize) { gRover = inFifoLatency; // gRover cycles up between (fftFrameSize - stepsize) and fftFrameSize // eg., 896 - 1024 for an osamp of 8 and framesize of 1024 /* do windowing and re,im interleave */ // note that the first time this runs, the inFIFO will be mostly zeroes, but essentially, the fft runs on // data that keeps getting slid to the left? // the window is like a triangular hat that gets imposed over the sample buffer before its input to the fft // the size of the hat is the fftsize and it scales off the data at beginning and end of the buffer // i think that the vDSP_ctoz function will accomplish the interleaving and complex formatting stuff below // we would still need to do the windowing, but maybe there's an apple function for that too // for (k = 0; k < fftFrameSize;k++) { // window = -.5*cos(2.*M_PI*(double)k/(double)fftFrameSize)+.5; // gFFTworksp[2*k] = gInFIFO[k] * window; // real part is winowed amplitude of samples // gFFTworksp[2*k+1] = 0.; // imag part is set to 0 // // NSLog(@"i: %d, k: %d, window: %f", i, k, window ); // } for (k = 0; k < fftFrameSize;k++) { window = -.5*cos(2.*M_PI*(double)k/(double)fftFrameSize)+.5; gFFTworksp[k] = gInFIFO[k] * window; // real part is winowed amplitude of samples // gFFTworksp[2*k+1] = 0.; // imag part is set to 0 // NSLog(@"i: %d, k: %d, window: %f", i, k, window ); } // cast to complex interleaved then convert to split complex vector vDSP_ctoz((COMPLEX*)gFFTworksp, 2, &A, 1, nOver2); // Carry out a Forward FFT transform. // NSLog(@"before transform"); vDSP_fft_zrip(fftSetup, &A, stride, log2n, FFT_FORWARD); // NSLog(@"after transform"); // convert from split complex to complex interleaved for analysis vDSP_ztoc(&A, 1, (COMPLEX *)gFFTworksp, 2, nOver2); /* ***************** ANALYSIS ******************* */ /* do transform */ // lets try replacing this with accelerate functions // smbFft(gFFTworksp, fftFrameSize, -1); /* this is the analysis step */ // this is looping through the fft output bins in the frequency domain for (k = 0; k <= fftFrameSize2; k++) { /* de-interlace FFT buffer */ real = gFFTworksp[2*k]; imag = gFFTworksp[2*k+1]; /* compute magnitude and phase */ magn = 2.*sqrt(real*real + imag*imag); phase = atan2(imag,real); /* compute phase difference */ // the gLastPhase[k] would be the phase from the kth frequency bin from the previous transform over this endlessly // shifting data tmp = phase - gLastPhase[k]; gLastPhase[k] = phase; /* subtract expected phase difference */ tmp -= (double)k*expct; /* map delta phase into +/- Pi interval */ qpd = tmp/M_PI; if (qpd >= 0) qpd += qpd&1; else qpd -= qpd&1; tmp -= M_PI*(double)qpd; /* get deviation from bin frequency from the +/- Pi interval */ tmp = osamp*tmp/(2.*M_PI); /* compute the k-th partials' true frequency */ tmp = (double)k*freqPerBin + tmp*freqPerBin; /* store magnitude and true frequency in analysis arrays */ gAnaMagn[k] = magn; gAnaFreq[k] = tmp; } // pitch detection ------------------ // find max magnitude for this pass maxMag = 0.0; displayFreq = 0.0; for (k = 0; k <= fftFrameSize2; k++) { if (gAnaMagn[k] > maxMag) { maxMag = gAnaMagn[k]; displayFreq = gAnaFreq[k]; } } freqTotal += displayFreq; pitchCount++; /* ***************** PROCESSING ******************* */ /* this does the actual pitch shifting */ memset(gSynMagn, 0, fftFrameSize*sizeof(float)); // why do we zero out the buffer to frame size but memset(gSynFreq, 0, fftFrameSize*sizeof(float)); // only actually seem to use half of frame size? // so this code assigns the results of the analysis. // it sets up pitch shifted bins using analyzed magnitude and analyzed freq * pitchShift for (k = 0; k <= fftFrameSize2; k++) { index = (long) (k * pitchShift); // NSLog(@"i: %d, index: %d, k: %d, pitchShift: %f", i, index, k, pitchShift ); if (index <= fftFrameSize2) { gSynMagn[index] += gAnaMagn[k]; gSynFreq[index] = gAnaFreq[k] * pitchShift; } } /* ***************** SYNTHESIS ******************* */ /* this is the synthesis step */ for (k = 0; k <= fftFrameSize2; k++) { /* get magnitude and true frequency from synthesis arrays */ magn = gSynMagn[k]; tmp = gSynFreq[k]; /* subtract bin mid frequency */ tmp -= (double)k*freqPerBin; /* get bin deviation from freq deviation */ tmp /= freqPerBin; /* take osamp into account */ tmp = 2.*M_PI*tmp/osamp; /* add the overlap phase advance back in */ tmp += (double)k*expct; /* accumulate delta phase to get bin phase */ gSumPhase[k] += tmp; phase = gSumPhase[k]; /* get real and imag part and re-interleave */ gFFTworksp[2*k] = magn*cos(phase); gFFTworksp[2*k+1] = magn*sin(phase); } /* zero negative frequencies */ for (k = fftFrameSize+2; k < 2*fftFrameSize; k++) gFFTworksp[k] = 0.; // convert from complex interleaved to split complex vector vDSP_ctoz((COMPLEX*)gFFTworksp, 2, &A, 1, nOver2); // Carry out an inverse FFT transform. vDSP_fft_zrip(fftSetup, &A, stride, log2n, FFT_INVERSE ); // scale it // the suggested scale factor makes the sound barely audible // so we should probably experiment with various things // I have a hunch that the stfft needs a different kind of scaling // float scale = (float) 1.0 / (2 * n); // float scale = (float) 1.0 / (osamp); float scale = .25; vDSP_vsmul(A.realp, 1, &scale, A.realp, 1, nOver2 ); vDSP_vsmul(A.imagp, 1, &scale, A.imagp, 1, nOver2 ); // covert from split complex to complex interleaved vDSP_ztoc(&A, 1, (COMPLEX *) gFFTworksp, 2, nOver2); /* do inverse transform */ // smbFft(gFFTworksp, fftFrameSize, 1); /* do windowing and add to output accumulator */ /* for(k=0; k < fftFrameSize; k++) { window = -.5*cos(2.*M_PI*(double)k/(double)fftFrameSize)+.5; gOutputAccum[k] += 2.*window*gFFTworksp[2*k]/(fftFrameSize2*osamp); } */ /* do windowing and add to output accumulator */ for(k=0; k < fftFrameSize; k++) { window = -.5*cos(2.*M_PI*(double)k/(double)fftFrameSize)+.5; gOutputAccum[k] += 2.*window*gFFTworksp[k]/(fftFrameSize2*osamp); } for (k = 0; k < stepSize; k++) gOutFIFO[k] = gOutputAccum[k]; // why use two different methods to copy memory? /* shift accumulator */ // this shifts in zeroes from beyond the bounds of framesize to fill the upper step size chunk memmove(gOutputAccum, gOutputAccum+stepSize, fftFrameSize*sizeof(float)); /* move input FIFO */ for (k = 0; k < inFifoLatency; k++) gInFIFO[k] = gInFIFO[k+stepSize]; } } // NSLog(@"pitchCount: %d", pitchCount); *frequency = (float) (freqTotal / pitchCount); // NSLog(@"pitch is: %f", *frequency ); } // ----------------------------------------------------------------------------------------------------------------- void smbFft(float *fftBuffer, long fftFrameSize, long sign) /* FFT routine, (C)1996 S.M.Bernsee. Sign = -1 is FFT, 1 is iFFT (inverse) Fills fftBuffer[0...2*fftFrameSize-1] with the Fourier transform of the time domain data in fftBuffer[0...2*fftFrameSize-1]. The FFT array takes and returns the cosine and sine parts in an interleaved manner, ie. fftBuffer[0] = cosPart[0], fftBuffer[1] = sinPart[0], asf. fftFrameSize must be a power of 2. It expects a complex input signal (see footnote 2), ie. when working with 'common' audio signals our input signal has to be passed as {in[0],0.,in[1],0.,in[2],0.,...} asf. In that case, the transform of the frequencies of interest is in fftBuffer[0...fftFrameSize]. */ { float wr, wi, arg, *p1, *p2, temp; float tr, ti, ur, ui, *p1r, *p1i, *p2r, *p2i; long i, bitm, j, le, le2, k; for (i = 2; i < 2*fftFrameSize-2; i += 2) { for (bitm = 2, j = 0; bitm < 2*fftFrameSize; bitm <<= 1) { if (i & bitm) j++; j <<= 1; } if (i < j) { p1 = fftBuffer+i; p2 = fftBuffer+j; temp = *p1; *(p1++) = *p2; *(p2++) = temp; temp = *p1; *p1 = *p2; *p2 = temp; } } for (k = 0, le = 2; k < (long)(log(fftFrameSize)/log(2.)+.5); k++) { le <<= 1; le2 = le>>1; ur = 1.0; ui = 0.0; arg = M_PI / (le2>>1); wr = cos(arg); wi = sign*sin(arg); for (j = 0; j < le2; j += 2) { p1r = fftBuffer+j; p1i = p1r+1; p2r = p1r+le2; p2i = p2r+1; for (i = j; i < 2*fftFrameSize; i += le) { tr = *p2r * ur - *p2i * ui; ti = *p2r * ui + *p2i * ur; *p2r = *p1r - tr; *p2i = *p1i - ti; *p1r += tr; *p1i += ti; p1r += le; p1i += le; p2r += le; p2i += le; } tr = ur*wr - ui*wi; ui = ur*wi + ui*wr; ur = tr; } } } // ----------------------------------------------------------------------------------------------------------------- /* 12/12/02, smb PLEASE NOTE: There have been some reports on domain errors when the atan2() function was used as in the above code. Usually, a domain error should not interrupt the program flow (maybe except in Debug mode) but rather be handled "silently" and a global variable should be set according to this error. However, on some occasions people ran into this kind of scenario, so a replacement atan2() function is provided here. If you are experiencing domain errors and your program stops, simply replace all instances of atan2() with calls to the smbAtan2() function below. */ double smbAtan2(double x, double y) { double signx; if (x > 0.) signx = 1.; else signx = -1.; if (x == 0.) return 0.; if (y == 0.) return signx * M_PI / 2.; return atan2(x, y); } // tz utility functions void printFFTInitSnapshot(long fftFrameSize2,long stepSize,double freqPerBin,double expct, long inFifoLatency, long gRover) { // NSLog(@"fft init snapshot"); // // NSLog(@"fftFrameSize2: %ld", fftFrameSize2); // NSLog(@"stepSize: %ld", stepSize); // NSLog(@"freqPerBin: %f", freqPerBin); // NSLog(@"expct: %f", expct); // NSLog(@"inFifoLatency: %ld", inFifoLatency); // NSLog(@"gRover: %ld", gRover); } void printFFTSnapshot(long i, long k, long qpd, long index, double magn, double phase, double tmp, double window, double real, double imag, long gRover){ // NSLog(@"fft snapshot"); // NSLog(@"i: %ld, k: %ld, qpd: %ld, index: %ld", i,k,qpd,index); // NSLog(@"magn: %f, phase: %f, tmp: %f", magn, phase, tmp ); // NSLog(@"window: %f, real: %f, imag: %f ", window, real, imag); // NSLog(@"gRover %ld", gRover); // } // ----------------------------------------------------------------------------------------------------------------- // ----------------------------------------------------------------------------------------------------------------- // -----------------------------------------------------------------------------------------------------------------